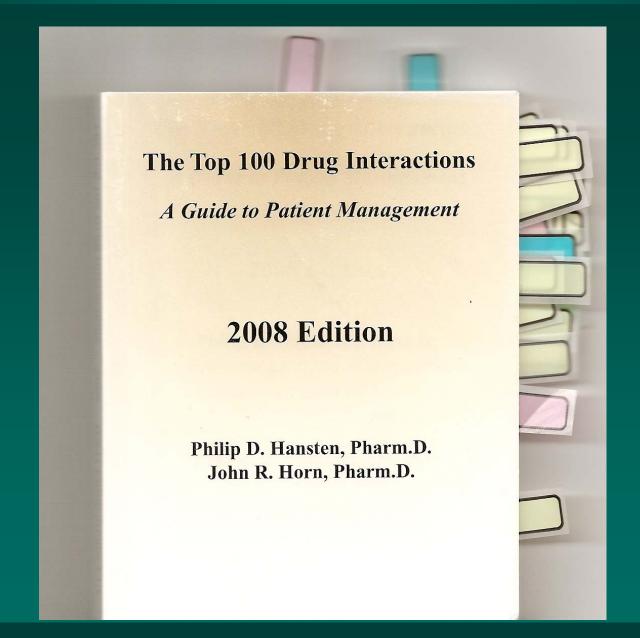
# AFPC Conference 2009

InterMed-Rx:
Harmony and optimal therapy in the use of medication

June 5 2009

Jacques Turgeon, B.Pharm., Ph.D.
Full professor, Faculty of pharmacy
Research Director, CHUM
Université de Montréal


## Conflict of interests

- Expert consultant:
  - Solvay
  - Abbott
  - Janssen Ortho
  - PharmaSciences
  - Bayer
- President et stock holder:
  - Intermed-Rx

## **Objectives**

- To understand basic principles of drug-drug interactions in order to avoid misuse of drugs in multiple drug prescriptions especially, with regards to CYP450 substrates.
- \* To explain and predict the clinical relevance and consequences of drug-drug interactions.
- \* To present clinical tools that allow identification of relevant drug-drug interactions.

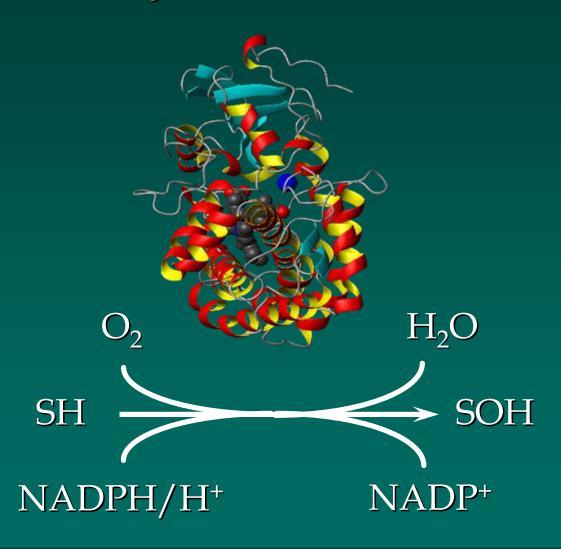
## Most frequent drug-drug interactions



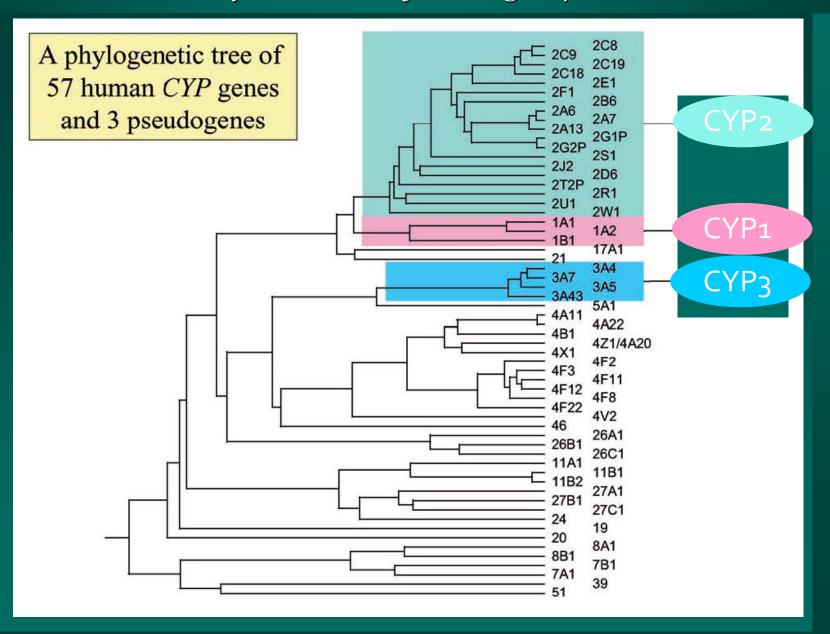
### Most frequent drug-drug interactions

- Warfarin aspirin acetaminophen
- Resins and acidic products
  - NSAIDs, diuretics, warfarin, hypoglycemic agents
- Antiacids and antibiotics
- MAO inhibitors and SSRI
- \* Nitrates and .....afil (Viagra®, Levitra®, Cialis®)
- Thyroxin and antiacids and resins
- \* Potassium and ACE inhibitors
- Calcium et tetracyclines/quinolones
- \* β-blockers and hypoglycemic agents
- \* β-blockers and stimulants (ephedrine)
- Digoxin and Ca channel blockers and β-blockers
- Cytochromes P450

# Three concepts to master


- Isoenzyme concepts
- Affinity concepts
- Oral clearance concepts

# Three concepts to master


- Isoenzyme concepts
- Affinity concepts
- Oral clearance concepts

## Intersubject variability in drug response

# **Cytochromes P450**



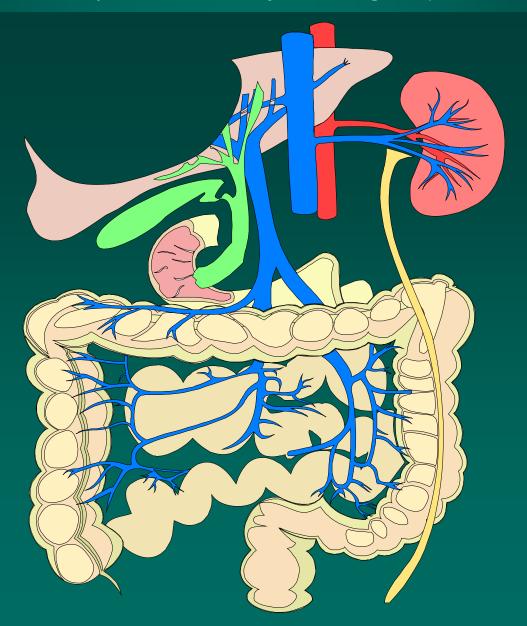
## Intersubject variability in drug response



| CYP  | Substrates                                               | Inhibitors                  | Inducers            |
|------|----------------------------------------------------------|-----------------------------|---------------------|
| 1A2  | Theophylline, caffein, imipramine, mexiletine            | Quinolones                  | Cigarette smoking   |
| 2A6  | Coumarin, nicotine                                       | Diethyldithiocar-<br>bamate |                     |
| 2C9  | NSAID, losartan, irbesartan, S-warfarin, celecoxib       | Sulfaphenazole              | Rifampin            |
| 2C19 | Omeprazole, R-warfarin                                   |                             |                     |
| 2D6  | Codein, antiarrhythmics,<br>β-blockers, anti-H1, SSRI    | Quinidine                   |                     |
| 2E1  | Alcohol, chlorzoxazone                                   |                             | Alcohol             |
| 3A4  | CCB, anti-H1 2 <sup>nd</sup> , BZD, cyclosporin, HMG CoA | Macrolides, imidazoles      | Rifampin, phenytoin |

# Three concepts to master

- Isoenzyme concepts
- Affinity concepts
- Oral clearance concepts


## CYP2C9

| Inhibitors     |             | Inducers      |             |          |
|----------------|-------------|---------------|-------------|----------|
| Fluconazole    | Fluvastatin | Ibuprofene    | Glyburide   | Rifampin |
| Sulfaphenazole | S-warfarin  | Diclofenac    | Irbesartan  |          |
| Sulfinpyrazone | Celecoxib   | Flurbiprofene | Losartan    |          |
|                |             | Naproxene     | Candesartan |          |
|                |             | Phenytoin     |             |          |
|                |             | Tolbutamide   |             |          |

# Three concepts to master

- Isozenzyme concepts
- Affinity concepts
- Oral clearance concepts

# Intersubject variability in drug response



Simvastatin has an oral bioavailability of 5%. By how much would its plasma concentrations raise during the co-administration of clarithromycine?

20 fois

#### Interactions between inhibitors and substrates of CYP3A4

- The coadministration of erythromycin, clarithromycin, ketoconazole, itraconazole
  - Simvastatine/lovastatine:
    - ◆ Cmax increases 5- à 20-fold
    - ◆ Rhabdomyolysis
  - Pravastatin, Cerivastatin, Fluvastatin, Atorvastatin
    - ♦ < 2-change increase in PK parameters</p>
    - ♦ Rhabdomyolysis

Clin Pharmacol Ther 1998;64:177-182 Clin Pharmacol Ther 1996;60:54-61 Eur J Clin Pharmacol 1999;54:851-855 J Clin Pharmacol 1999;39:501-504 Transplantation 1996;15:1559-1564

### Drug-drug interactions

#### Case #1

A 56 years old man has symptoms of depression and fatigue. He has known hypertension treated with hydrochlorothiazide 12,5 mg ID and metoprolol 100 mg BID. He has been started 5 days ago on paroxetine (Paxil®) 10 mg ID to improve its depression related symptoms. The patient complains that he is really tired, with no energy. His pulse rate is at 44 beats/min.

### Drug-drug interactions

#### **Drug-drug interaction softwares**

- 1) Based on data bank and case reports
  - a) Epocrates
  - b) First Data Bank
  - c) Vigilance Santé
  - d) www.accp.com/p450.html
  - e) www.tthhivclinic.com/interactions.htm
  - f) www.fda.gov/oashi/aids/pitabv.html
  - g) www.HIV.medscape.com/Medscape/HIVdDrugInteractions/index.html
  - h) www.hopkins-aids.edu/geneva/hilites\_flex\_drug.html
- 2) Based on pharmacokinetics and drug metabolism algorithms
  - a) Intermed-Rx.ca (www.Intermed-rx.ca)
  - b) GeneMedRx (<u>www.mhc.com/cytochromes/</u>)
  - c) www.dml.georgetown.edu/depts/pharmacology/clinlist.html

#### www.InterMed-Rx.ca



#### WELCOME

The use of therapeutic regimes that rely on polypharmacy entail higher risks of drug interactions. Consequently, these interactions must be monitored more closely by health professionals.

The InterMED-Rx.ca Website provides health professionals with a user-friendly tool at the cutting edge of scientific knowledge. This site provides a better grasp of drug interactions related to the cytochrome P450 superfamily.

Jacques Turgeon, B.Pharm., Ph.D.



#### SITE SPONSORS

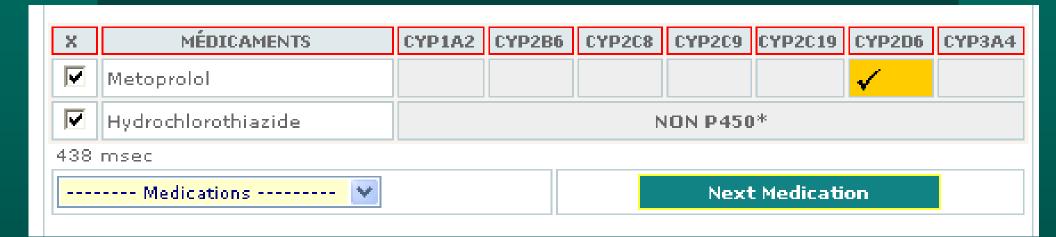
Member of (R&L







#### CYTOCHROME P-450 THEORETICAL NOTIONS


The cytochrome P450 is a superfamily of enzymes whose main role is to transform liposoluble substances into more hydrosoluble



| Isoenzymes                              | Inhibiteurs          | Substrats       |                   |                | Inducteurs        |
|-----------------------------------------|----------------------|-----------------|-------------------|----------------|-------------------|
| CYP1A2                                  | Anastrozole          | Aromatic Amines | Cinacalcet        | Acetaminophen  | Charcoal cooking  |
|                                         | Ciprofloxacin        | Warfarin        | Clozapine         | Aminophylline  | Cigarette smoking |
|                                         | Fluvoxamine          |                 | Duloxetine        | Caffeine       | Mebendazole       |
|                                         | ■ Interferon alfa-2b |                 | ■ Flutamide       | Clomipramine   |                   |
|                                         | Isoniazid            |                 | Mexiletine        | Dacarbazine    |                   |
|                                         | Methoxsalen          |                 | Olanzapine        | ■ Frovatriptan |                   |
|                                         |                      |                 | Rasagiline        | ■ Imipramine   |                   |
|                                         |                      |                 | ■ Tacrine         | Oxtriphylline  |                   |
|                                         |                      |                 | ■ Trifluoperazine | Pentazocine    |                   |
|                                         |                      |                 |                   | Primaquine     |                   |
|                                         |                      |                 |                   | Ropinirole     |                   |
|                                         |                      |                 |                   | ■ Theophylline |                   |
|                                         |                      |                 |                   | ■ Tizanidine   |                   |
|                                         |                      |                 | <u></u>           | Zolmitriptan   |                   |
| CYP2B6                                  | Delavirdine          | Efavirenz       | Cyclophosphamide  | Bupropion      | Dexamethasone     |
|                                         | Orphenadrine         | Nelfinavir      | ■ Ifosfamide      | ■ Flunarizine  | Doxylamine        |
|                                         | ■ Tidopidine         | Ritonavir       | ■ Methadone       | Procarbazine   | Nevirapine        |
|                                         |                      |                 | Nevirapine        | Propofol       | Pentobarbital     |
|                                         |                      |                 |                   |                | Phenobarbital     |
|                                         |                      |                 |                   |                | Phenytoin         |
|                                         |                      |                 |                   |                | Primidone         |
|                                         |                      |                 |                   |                | Rifampicin        |
| *************************************** | _                    |                 |                   |                | Ritonavir         |
| CYP2C8                                  | Phenelzine           | Gemfibrozil     | Loperamide        | Cerivastatin   | Pentobarbital     |
|                                         | ■ Trimethoprime      |                 | Paclitaxel        | Chloroquine    | Phenobarbital     |

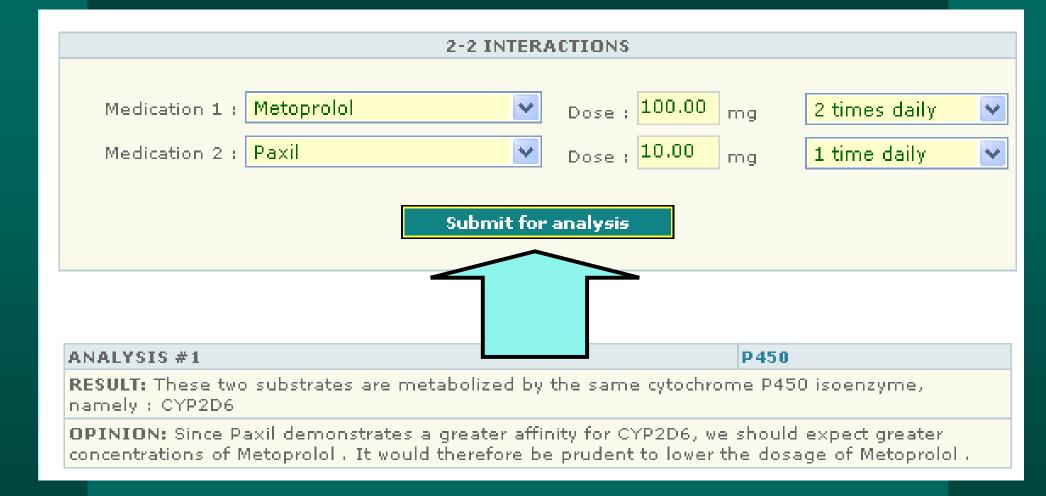


#### InterMed-Rx.ca



In this section, the healthcare provider may enter the medications that make up the patients posological regime, one by one.

Medications available for interaction analysis can be found in the pulldown menu.


Inhibitor Strong Sub. Medium Sub. Weak Sub. Inducer

By clicking the «Next Medication» button, you may choose the next medication.

To delete a medication form the interactions table, un-check the checkbox to the left of the medication and click the «Next Medication» button.

When all medications are entered, you may click the «Interaction Analysis» button to launch the process that will identify possible interactions.

| Х    | MÉDICAMENTS         | CYP1A2    | CYP2B6 | CYP2C8 | CYP2C9 | CYP2C19    | CYP2D6 | CYP3A4 |  |
|------|---------------------|-----------|--------|--------|--------|------------|--------|--------|--|
| V    | Metoprolol          |           |        |        |        |            | ✓      |        |  |
| V    | Hydrochlorothiazide | NON P450* |        |        |        |            |        |        |  |
| V    | Paxil               |           |        |        |        |            | ✓      |        |  |
| 2734 | 2734 msec           |           |        |        |        |            |        |        |  |
|      | Medications         |           |        |        | Next   | : Medicati | on     |        |  |



#### ARTICLES RETAINED FOR CYP2D6 AND METOPROLOL AND PAXIL

In vitro-in vivo extrapolation of CYP2D6 inactivation by paroxetine: prediction of nonstationary pharmacokinetics and drug interaction magnitude.

metabolism of metoprolol in human liver microsomes: inhibition by the selective uptake inhibitors.

Co-prescription of cytochrome P450 2D6/3A4 inhibitor-substrate pairs in clinical practice. A retrospective analysis of data from Norwegian primary pharmacies.

CYP2D6 genotype and phenotyping by determination of dextromethorphan and metabolites in serum of healthy controls and of patients under psychotropic medication.

Relationship of paroxetine disposition to metoprolol metabolic ratio and CYP2D6\*10 genotype of Korean subjects.

Selecting an appropriate medication for treating neuropathic pain in patients with diabetes: a study using the U.K. and Germany mediplus databases.

Inhibition of metoprolol metabolism and potentiation of its effects by paroxetine in routinely treated patients with acute myocardial infarction (AMI).

Complete atrioventricular block associated with concomitant use of metoprolol and paroxetine.

Entrez PubMed

Overview
Help | FAQ
Tutorials
New/Noteworthy 
E-Utilities

PubMed Services

Journals Database
MeSH Database
Single Citation
Matcher
Batch Citation Matcher
Clinical Queries
Special Queries
LinkOut
My NCBI

Related Resources

Order Documents
NLM Mobile
NLM Catalog
NLM Gateway
TOXNET

1: Eur J Clin Pharmacol. 1998 May;54(3):261-4.

Related Articles, Links

The oxidative metabolism of metoprolol in human liver microsomes: inhibition by the selective serotonin reuptake inhibitors.

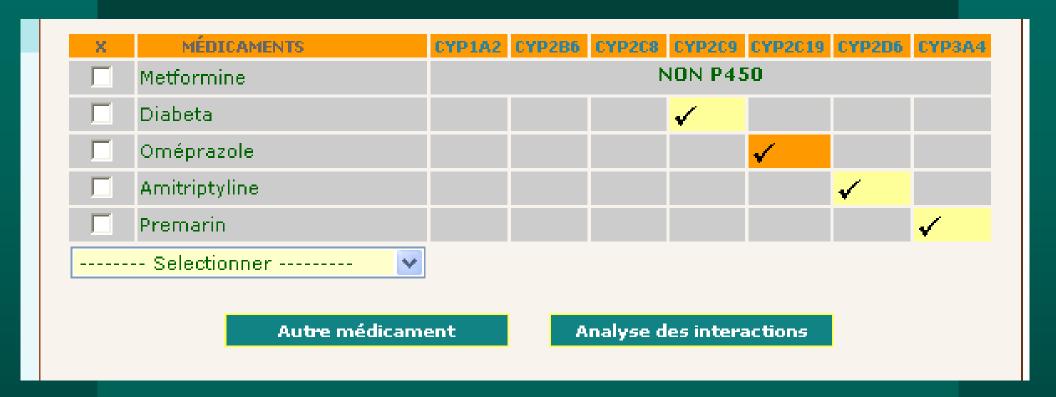
Belpaire FM, Wijnant P, Temmerman A, Rasmussen BB, Brosen K.

Heymans Institute of Pharmacology, University of Gent Medical School, Belgium. frans.belpaire@rug.ac.be

OBJECTIVE: Biotransformation of metoprolol to alpha-hydroxymetoprolol (HM) and Odemethylmetoprolol (ODM) is mediated by CYP2D6. The selective serotonin reuptake inhibitors (SSRIs) are known to inhibit CYP2D6. The aim was to study in vitro the potential inhibitory effect of SSRIs on metoprolol biotransformation. METHODS: Using microsomes from two human livers, biotransformation of metoprolol to alpha-hydroxymetoprolol (HM) and Odemethylmetoprolol (ODM) as a function of the concentrations of the SSRIs and of some of their metabolites was studied. RESULTS: The kinetics of the formation of both metabolites are best described by a biphasic enzyme model. The estimated values of Vmax and kM for the high affinity site are for the alpha-hydroxylation in human liver HL-1 32 pmol mg(-1) min(-1) and 75 micromol x l(-1) respectively, and in human liver HL-9 39 pmol mg(-1) x min(-1) and






#### Clinical Case #2

A patient complains of arthritis pain and her doctor prescribes celecoxib/Celebrex® 200 mg die.

#### Her pharmacological fil shows:

Metformine/Glucophage® 500 mg tid Glyburide/Diabeta® 2.5 mg bid Omeprazole/Losec® 20 mg die Amitriptyline/Elavil 10 mg HS Conjugated oestrogens/Premarin® 0.625 mg die Calcium 500 mg bid

Upon her next visit to your pharmacy, the patient complains about flushing, weaknesses and drowsiness since few days. She is convinced that her hormonal drug has to be reviewed but she also mentioned that on occasion, her glycemia seems lower than previously. What pertinent drug-drug interaction can be unmasked?



|  | Metformine                                |          |  |  |   |   |   | CYP3A4 |
|--|-------------------------------------------|----------|--|--|---|---|---|--------|
|  |                                           | NON P450 |  |  |   |   |   |        |
|  | Diabeta                                   |          |  |  | ✓ |   |   |        |
|  | Oméprazole                                |          |  |  |   | ✓ |   |        |
|  | Amitriptyline                             |          |  |  |   |   | ✓ |        |
|  | Premarin                                  |          |  |  |   |   |   | ✓      |
|  | Celebrex                                  |          |  |  | ✓ |   |   |        |
|  | Selectionner                              |          |  |  |   |   |   |        |
|  |                                           |          |  |  |   |   |   |        |
|  | Autre médicament Analyse des interactions |          |  |  |   |   |   |        |

#### Clinical Case #3

A patient aged 41 years old a chronic pain since several years. She is followed by a chronic pain clinic and in psychiatry.

#### For her pain control, she receives:

Baclofen/Lioresal® 10 mg 4 co/day Gabapentin/Neurontin® 300mg 15 caps/day Mexiletine 100 mg 6 caps/day Methadone 17.5 mg bid

#### For her mood, she receives:

Bupropion/Wellbutrin SR® 100 mg 3 co/day Carbamazepine/Tegretol® 200 mg 3 co HS Paroxetine/Paxil® 20 mg 2 co die Clonazepam/Rivotril® 2 mg tid prn

What can be sais about drug-drug interactions in this patient?

| X | MÉDICAMENTS    | CYP1A2   | CYP2B6 | CYP2C8   | CYP2C9    | CYP2C19 | CYP2D6 | СҮРЗА4 |
|---|----------------|----------|--------|----------|-----------|---------|--------|--------|
|   | Tegretol       |          |        |          |           |         |        | ✓      |
|   | Rivotril       |          |        |          |           |         |        | ✓      |
| Г | Méthadone      |          | ✓      |          |           |         | ✓      | ✓      |
|   | Mexilétine     | ✓        |        |          |           |         | ✓      |        |
|   | Paxil          |          |        |          |           |         | ✓      |        |
|   | Baclofène      | NON P450 |        |          |           |         |        |        |
|   | Neurontin      | NON P450 |        |          |           |         |        |        |
| Г | Wellbutrin SR  |          | ✓      |          |           |         |        |        |
|   | Selectionner   |          |        |          |           |         |        |        |
|   |                |          |        |          |           |         |        |        |
|   | Autre médicame | ent      | А      | nalyse d | es intera | ctions  |        |        |

## Intersubject variability in drug response

#### **Conclusions**

- Clinical consensus and the availability of new classes of drugs are factors that contribute to the emergence of polypharmacy.
- Drug-drug interactions are no longer of the academic world. They can be understood, they can be predicted and they can be managed with tools that can support clinicians by providing new information.

#### References

- Hansten PD et Horn JR. The top 100 Drug interactions. 2008 edition. H&H Publications.
- www.intermed-rx.ca
- www.medicine.iupui.edu/flockhart/
- Drug interaction facts
- \* PubMed